
Evaluating Llama-2 and GPT models
on the Grammatical Errors Correction

Task
Hung Hoang - hunghoang26@uwo.ca

I. Introduction
Grammatical errors correction (GEC) is a common task that is carried out on a daily basis by
non-native and native speakers alike. For foreign language learners, it plays an even more
special role during their learning process as this helps them identify, fix and learn from their
writing mistakes.

In this project, I evaluated the GEC performance of two of the most recent and well-known
Large Language Models (LLMs): Llama-2 models from Meta and GPT models from OpenAI.
The evaluation was carried out following the protocol of the Building Educational Application
(BEA) 2019 Shared Task on GEC [1, 2] for the English language.

The results showed that, when evaluated using this framework, larger-version LLMs did not
perform better. This surprising result, after analysis, has revealed that in the context of LLMs,
the current GEC evaluation approach is no longer adequate.

II. Background on BEA 2019 Shared Task and Evaluation
The BEA 2019 Shared Task on GEC helped push evaluation of GEC systems forward by
making 2 concrete contributions: (1) providing common labeled datasets for training and
evaluation and (2) incorporating the evaluation toolkit called ERRANT [3].

Datasets
In this project, I made use of off-the-shell LLMs and as such, did not make use of the
datasets described below for training. There are, therefore, only described briefly below.

The BEA 2019 Shared Task introduced 2 new labeled datasets for training and standardized
some previously published GEC datasets by running the ERRANT Toolkit over them. More
details of these other datasets are provided in the Shared Task website [1] while the
ERRANT Toolkit is described in the next section.

Besides the Training set, this Shared Task used a Test set of 4,447 sentences, which was
also used for its ongoing Leaderboard [4]. The gold labels for the Test set were not made

mailto:hunghoang26@uwo.ca

available and hence, the only way to measure the system’s performance over this data set is
to submit correction outputs to the Leaderboard evaluation system.

The ERRANT Toolkit
The introduction of ERRANT (ERRor ANnotation Toolkit) [3] as a common evaluation metric
enabled quick comparison among different GEC systems.

This toolkit requires 2 files as inputs: one containing original sentences and one containing
corrected sentences in the same order. This toolkit then automatically produces a file,
commonly referred to by the author as an “M2” file, listing the corrections made for each
sentence, and for each correction, automatically identifying the error category. In total, there
are 25 main error categories recognized by ERRANT, using about 50 coded rules.

To make it clearer, I go through a specific example and explain the various labels and
outputs by ERRANT.

●​ Input: Travelling through car is a convenient mode of transport , but most of the
population can not afford it .

●​ Corrected (by GPT 3.5): Traveling by car is a convenient mode of transport , but most
of the population can not afford it .

M2 file produced by ERRANT:

●​ S Travelling through car is a convenient mode of transport , but most of the
population can not afford it .

●​ A 0 1|||R:VERB:FORM|||Traveling|||REQUIRED|||-NONE-|||0
●​ A 1 2|||R:PREP|||by|||REQUIRED|||-NONE-|||0

Explanations:

●​ The first line starts with “S” indicating the original sentence to fix. For ERRANT to
work, the input pair (original sentence and corrected one) must have been tokenized
using the Spacy library [5], as shown in the sentence pairs above. The general effect
of this tokenization is simply introducing a space before each word and punctuation
mark. This tokenization is not the same as the more complex tokenization done by
LLMs where words may be split into subwords.​

●​ The next lines always start with “A” and contain information about corrections made.
Each correction has its own line with the following format: ​
A <start index> <end index> |||<R/U/M>: Classified error type>|||<Correct
word/phrase>|||REQUIRED|||-NONE-|||<Annotator id>

○​ Fields separator is “|||”.
○​ There are 2 fields that always have the same value, and are there only for

legacy purposes: “REQUIRED” and “-NONE-”.
○​ <start index> and <end index>: refer to the index of the incorrect string in the

original sentence. This index uses Python semantics: sentence[start index :
end index]. In the first line, this refers to the word “Travelling”.

○​ The edit type, which can be one of these 3 letters: R, U and M:

■​ R: replacement. This means the original string is replaced with a new
string.

■​ U: unnecessary. This means the original string is deleted.
■​ M: missing. This means a new string is inserted at the specified index.

(In this case, <start index> would be equal to <end index>).
○​ <Classified error type>: one of the error categories recognized by ERRANT; if

not recognized, “OTHER” is shown.
○​ <Correct word/phrase>: the correct version suggested by the GEC program.
○​ <Annotator id>: the id of the annotator, starting with 0. In our example, the

corrected version was produced by 1 annotator (our system) with id 0. This
field was used to identify which corrections were suggested by which
annotator, in the case where a sentence might have been annotated by
multiple annotators.

In the above example, GPT3.5 made 2 corrections:

●​ Changed “Travelling” to “Traveling” (from double “l” to a single “l”). This correction
was classified by ERRANT as a “VERB:FORM” type (a correction of verb forms).

●​ Changed “through” to “by”. This correction was classified by ERRANT as a “PREP”
type (a correction of prepositions).

Below is another example produced by Llama-2 70B model:

●​ Input: ​ ​ It was built in 79 A.C. by Tito , who was the Roman emperor .
●​ Corrected: ​ It was built in AD 79 by Titus , who was the Roman emperor .

M2 output produced by ERRANT:

●​ S It was built in 79 A.C. by Tito , who was the Roman emperor .
●​ A 4 4|||M:NOUN|||AD|||REQUIRED|||-NONE-|||0
●​ A 5 6|||U:NOUN||||||REQUIRED|||-NONE-|||0
●​ A 7 8|||R:NOUN|||Titus|||REQUIRED|||-NONE-|||0

​

Explanations:

●​ The first edit is an “M” (missing) edit, which means new tokens were inserted: at
index 4, Llama suggested adding “AD”.

●​ The second edit is an “U” (unnecessary) edit, which means existing tokens were
deleted: the token at index 5 (“A.C.”) was deleted.

●​ The third edit is an “R” (replacement) edit, which means existing tokens were
replaced with new tokens. Here, Llama replaced “Tito” with “Titus”.

Evaluation Metric
The metric used for the BEA 2019 Shared Task is F0.5 of Precision and Recall.

where:

●​ Precision: the ratio of correctly identified errors over all errors identified by the
system. The list of all errors are given by the provided gold M2 file. A correction is
considered correct if both the location of the fixed tokens in the input string and the
corrected tokens are both correct, i.e., all <start index>, <end index> and <correct
word/phrase> must be all correct. As this takes into consideration the location of the
error, this was referred to as “Span-Based Correction” the terminology of the BEA
2019 Shared Task.

●​ Recall: the percentage of all errors given by the gold M2 file that were correctly
identified by the system.

●​ Beta: in our case is 0.5. A beta of 0.5 makes Precision more important than Recall,
as the same percentage increase in Precision, compared with Recall, would cause a
much less increase in the value of the denominator.

This Shared Task chose to use F0.5 instead of F1 to assign more weight to Precision than
Recall. In educational settings, this makes sense as, for example, a real teacher would
rather “overlook” some errors than mistakenly mark a correct phrase as an error.

The Unrestricted Track
The BEA 2019 Shared Task consisted of 3 main tracks:

●​ Restricted Track: where only training data as described in the “GEC Datasets”
Section above can be used to train systems.

●​ Unrestricted Track: any dataset and software can be used.
●​ Low-resource Track: only certain corpora could be used for training.

The scope and completion time of this project, if it needs to be classified into one of the
above tracks, would belong to the Unrestricted Track. This track has an “open phase” where
there is no set deadline and anyone can submit their results over the Test Set for evaluation.

III. Methods

Evaluated Models and Methodology
In this project, I evaluated the (open-sourced) Llama-2 models [6] and (proprietary) GPT
models [7], using the BEA 2019 evaluation protocol described above.

In particular, the following specific models are evaluated:

●​ Llama-2 13B Chat (13B: refers to 13 billion parameters)
●​ Llama-2 70B Chat
●​ GPT 3.5 (Turbo)
●​ GPT 4

●​ GPT 4 1106 preview (which was made available after OpenAI Dev date on
6/Nov/2023).

All of the above LLMs are generative models (or auto-regressive models) with Transformer
[8] as their underlying architecture. They have all been pretrained on enormous datasets. As
these models are very recent and complex, a more detailed description of their particular
architecture tweaks and pretraining process is beyond the scope of this project and is hence
omitted here. This omission does not affect this project’s goals.

As these LLMs are known to be able to capture language syntax and semantics, I
experimented with evaluating them for this GEC task in a zero-shot manner, i.e., using these
pretrained models as is, except that, as described in the following Experiments section,
some demonstration examples are used to communicate the desired output format to these
LLMs.

The models above are invoked via API calls provided by OpenAI for GPT models [7] and
OpenRouter [9] for Llama models. After getting the response, each corrected sentence is
then tokenized using Spacy before passed to ERRANT to produce an M2 file containing
corrections’ annotations. This M2 file is then compared with the gold M2 file to calculate
Precision, Recall and F0.5 .

For the purpose of this project, besides assessing whether GEC is a solved problem,
another question of interest is how much the bigger models would outperform smaller ones.
In practical applications, smaller models are preferred, if they can reach a target
performance, as they help reduce both inference time and cost.

​
Our Evaluation Dataset
As the outputs of these LLMs are produced via paid APIs provided by third-parties,
experimenting over this entire Test set would not only be more costly but also take
substantially longer time to complete. But more importantly, as the Test set’s labels are not
provided, it would not be possible to “debug” our results.

As such, I looked at the provided 4,384-sentence Dev set, whose labels are available. To
reduce experiments running time and cost, I took out from the Dev set a random
400-sentence subset to form my evaluation set. This 400-sentence evaluation dataset is
stratified based on the length of the sentences as follows: first sort the Dev set by sentences’
lengths and then partition them into 4 equal sets. From each set, randomly take 100
sentences to form our 400-sentence evaluation data set.

The rationale for stratifying based on sentences’ length is that, from both experience and
common sense, the length of a sentence has a high correlation with the number of
grammatical errors. As such, stratifying our evaluation data set based on length will make
our results more closely match the results of evaluated on the entire Dev set.

IV. Experiments and Results

As Llama-2 models are open-sourced with lower API costs, I experimented first with these
models. In all of the experiments, sentences are put together in a batch instead of being sent
individually as batching would help reduce response latency and cost as we only need to
send the prompt for each batch instead of each sentence.

For all models, the system message, which was sent together with each prompt, was: “You
are a dedicated English teacher.”

Llama-2 13B Model
Below is the best-performing prompt for the Llama-2 13B model.

Prompt used for Llama-2 13B model

Please fix all grammar errors in the following sentences. Do not change the words if they
are not wrong: be conservative and make changes only when necessary. Each sentence
has the format: {sentence number}: {content}. Fix the content of each sentence individually
and return the one best corrected sentence. Do not return anything else besides the
corrected version.

1: As well , the fact that so many people (especially in the US) have television sets
means that everybody (well , at least everybody who watches) receives the same inflow
of information and ideas .

2: It is based on a survey of the young people from Whitehall College as well as my own
opinion as a permanent resident in the area .

…

This prompt was arrived at after some experimenting to deal with a prominent problem with
this 13B model: it did not fix all the sentences in the input, e.g., returning only 15 fixed
sentences for an input batch of 20 sentences.

In addition, Llama 13B’s outputs were also not consistent in format, causing problems in
parsing its responses. As can be seen in the above prompt, although I have tried to explicitly
add “Do not return or say anything else besides the corrected version.” in the prompt, its
outputs’ format was still not consistent. Below are 2 examples of this behavior:

1: I'm looking forward to seeing you.
Corrected: I'm looking forward to seeing you.

2: In Malaysia, the weather is slightly warmer than there. (Should be "the weather is slightly
warmer than here.")

In the first example, it introduced, on its own, the prefix “Corrected: “ while in the second
example, it repeated the input sentence and introduced the corrected fragment in a bracket.

Eventually, to deal with its unexpected outputs, I had to fix them manually by either making
additional API calls for missing sentences or to format its outputs to the expected form. In
general, its unexpected outputs made this model less useful in practice.

Below is its performance on our 400-sentence evaluation dataset:

TP FP FN Prec Rec F0.5

276 686 380 0.2869 0.4207 0.3064

​
Table 1: Result of Llama-2 13B model

The Precision was rather low so I proceeded to experiment with the larger 70B version to
see if this larger version could achieve better results.

Llama-2 70B Model
Below is the best performing prompt of Llama-70B using demonstrations:

Prompt used for Llama-2 70B model

Please fix all grammar errors in the following sentences, some of them may contain only
short phrases. Do not change the words if they are not wrong: be conservative and make
changes only when necessary. For each sentence, return one best corrected version,
starting your sentence with "Fixed: ". Do not repeat the example sentences.

Follow these 2 examples:
1. It 's difficult answer at the question " what are you going to do in the future ? " if the only
one who has to know it is in two minds .
1. Fixed: It's difficult to answer the question "what are you going to do in the future?" when
the only one who has to know it is in two minds.

2. When I was younger I used to say that I wanted to be a teacher , a saleswoman and
even a butcher .. I do n't know why .
2. Fixed: When I was younger, I used to say that I wanted to be a teacher, a saleswoman,
and even a butcher. I don't know why.

1. As well , the fact that so many people (especially in the US) have television sets
means that everybody (well , at least everybody who watches) receives the same inflow
of information and ideas .

2. It is based on a survey of the young people from Whitehall College as well as my own
opinion as a permanent resident in the area .

…

A marked difference of this 70B compared to its smaller sibling is that it followed instructions
and demonstrations much better, except for a few cases of inconsistent format. For the
smaller 13B model, when experimented using the above prompt (with demonstrations), its
output format was still inconsistent.

Below is the evaluation result for this 70B model.

TP FP FN Prec Rec F0.5

298 728 358 0.2904 0.4543 0.313

​
Table 2: Result of Llama-2 70B model

It was really surprising to me that this 70B version, despite its much better instruction
following capability, did not perform better than its 13B sibling on Precision. On Recall, it
improved by just 3%.

Next, I moved on to the GPT models to see if they could do better.

GPT 3.5 (Turbo) Model
I experimented with GPT3.5 using exactly the same as the prompt I used above with the
Llama-2 70B model (with demonstrations). Below is its evaluation result:

TP FP FN Prec Rec F0.5

325 496 331 0.3959 0.4954 0.4124

​
Table 3: Result of GPT 3.5 model

Compared with the Llama-2 70B model, GPT3.5 improved Precision by 10.5% and Recall by
4%.

GPT3.5 also followed instructions perfectly (no manual edits needed), and a much larger
batch size could be used, until reaching the max context window of 4K for this model, at a
batch size of about 60 sentences. In contrast, for Llama-70B, I could only use a batch size of
15 sentences, because increasing the batch size more than this limit will cause it to ignore
subsequent input sentences.

Before experimenting with GPT4, I tried to add 2 no-error sentences to the existing
2-example demonstration to experiment with whether this helped reduce false positive cases
by explicitly telling the model that it does not always need to produce a fix if the input
sentence is already correct. The evaluation result nevertheless did not show any material
improvements.

If GPT3.5 could increase the Precision by 10%, my hope was that GPT4 would add, at least,
another 10% - 20% in Precision.

GPT 4 Models
For GPT4 models, I used the same prompt that was used for the GPT3.5 model above.

TP FP FN Prec Rec F0.5

294 628 362 0.3189 0.4482 0.3384

​
Table 4: Result of GPT 4 model

TP FP FN Prec Rec F0.5

337 610 319 0.3559 0.5137 0.3792

​
Table 5: Result of GPT 4-1106 Preview model

GPT4-1106 Preview performed better than GPT-4 by 4% in F0.5, but both performed worse
than GPT3.5 in Precision (0.3959), and only less than 2% improvement in Recall from the
1106-Preview model.

As this result totally contradicts our common knowledge that GPT4 is much superior to
GPT3.5, this warranted some investigation on its unexpected poor performance. The results
of my manual analysis of its outputs are discussed in the next section.

V. Analysis and Discussion
To discover the reason for GPT4's poor performance and LLMs’ disappointingly low
performance in general, I manually looked at their outputs and compared them with the gold
labels.

It turned out that LLMs made substantially more corrections than what were covered by the
gold labels, i.e., producing many false positives (from the viewpoint of the gold labels).

These corrections may or may not be necessary, but they are by no means incorrect. Below
I give 2 concrete examples of this behavior: one from Llama-70B and one from GPT4.

An example output from Llama-2 70B

Input: Granted , it is the person who " told " the computer what to do that truly made the
error ; however if that person knew what he should do , or better stated " was able to do
with a computer " , he would not have erroneous answers .

Output: Granted , it is the person who told the computer what to do that truly made the
error ; however , if that person knew what they should do , or better stated , " was able to
do with a computer , " they would not have received erroneous answers .
Output M2:

●​ A 7 8|||U:PUNCT||||||REQUIRED|||-NONE-|||0
●​ A 9 10|||U:PUNCT||||||REQUIRED|||-NONE-|||0
●​ A 22 22|||M:PUNCT|||,|||REQUIRED|||-NONE-|||0
●​ A 27 28|||R:PRON|||they|||REQUIRED|||-NONE-|||0
●​ A 34 34|||M:PUNCT|||,|||REQUIRED|||-NONE-|||0
●​ A 42 44|||R:WO|||, "|||REQUIRED|||-NONE-|||0
●​ A 44 45|||R:PRON|||they|||REQUIRED|||-NONE-|||0
●​ A 48 48|||M:VERB|||received|||REQUIRED|||-NONE-|||0

Gold output: Granted , it is the person who " told " the computer what to do that truly made
the error . However , if that person knew what he should do , or better stated " was able to
do with a computer " , he would not have erroneous answers .
Gold M2:

●​ A 20 22|||R:OTHER|||. However ,|||REQUIRED|||-NONE-|||0

From this example, we could observe the following:

●​ Llama-70B kept “; “ as the connector between 2 clauses while the gold label wanted
to make them 2 separate sentences. As there is only 1 labeled fix, and the model
missed it, recall for this case is 0%.

●​ The model made many more corrections not covered by labeled data, such as 2 fixes
about changing “he” to “they” for pronoun reference, which I think is correct. The
model also changed “would not have erroneous answers” to “would not have
received erroneous answers” (adding “received”), which is again not covered by
labeled data. This makes the model’s precision for this example 0%.

This example demonstrates that while the model’s corrections are decent, it received 0% for
both recall and precision due to low coverage of labeled data. LLMs in general tend to make
more number of corrections and the changes they make tend to be “out of the box” kinds of
changes. This observation helps explain their surprisingly low precision and recall, despite
the fact that their outputs are, arguably, correct.

An example output from GPT4

Input: Before training i ran 1 - 2 kilometres and my legs get a power and my body gets an
energy .

Output: Before training , I ran 1 - 2 kilometres giving power to my legs and energy to my
body .
Output M2:

●​ A 2 3|||M:PUNCT|||, I|||REQUIRED|||-NONE-|||0
●​ A 8 9|||R:OTHER|||giving power to|||REQUIRED|||-NONE-|||0
●​ A 11 14|||U:OTHER||||||REQUIRED|||-NONE-|||0
●​ A 15 15|||M:OTHER|||energy to|||REQUIRED|||-NONE-|||0
●​ A 17 20|||U:OTHER||||||REQUIRED|||-NONE-|||0

Gold output: Before training , I run 1 - 2 kilometres and my legs get power and my body
gets energy .
Gold M2:

●​ A 2 2|||M:PUNCT|||,|||REQUIRED|||-NONE-|||0
●​ A 2 3|||R:ORTH|||I|||REQUIRED|||-NONE-|||0
●​ A 3 4|||R:VERB:TENSE|||run|||REQUIRED|||-NONE-|||0
●​ A 12 13|||U:DET||||||REQUIRED|||-NONE-|||0
●​ A 18 19|||U:DET||||||REQUIRED|||-NONE-|||0

Technically, all corrections made by the model are deemed incorrect according to gold
labels, and this means 0% for both precision and recall for this input.

Semantically, the differences in the model’s corrections and those of the labeled data are:

●​ The model kept the past tense “ran”, while the labeled corrections changed it to the
present tense: “run”. This change is, in my opinion, optional.

●​ The labeled corrections tried to keep as much of the original sentence as possible
and made minimal changes, in both cases dropping the article in front, to make the
sentence syntactically correct:

○​ “my legs get a power” → “my legs get power”
○​ “my body gets an energy” → “my body gets energy”

●​ Meanwhile, the model rewrote the phrase, still using keywords such as “power” and
turned it into: “giving power to my legs and energy to my body”. I consider this a more
fluid expression.

Follow-up experiments
From the above observations, I made 2 follow-up experiments:

Experiment 1:
From the above observation, I tried a final tweak to the prompt to explicitly tell the LLMs:

●​ Focus on fixing existing words rather than introducing new words. (This is another
attempt to reduce false positives)

●​ Not to fix British English spelling
●​ Not to correct factual errors

Nevertheless, this new prompt did not produce any material improvements in results.

Experiment 2:
Most LLMs generate new words via sampling based on probabilities assigned to each
possible token in the vocabulary set. There is a parameter called “temperature” that can
influence this process as it affects the probability assigned to each word at the softmax layer.
Decreasing the temperature will make the probability distribution become sharper and
hence, making the sampling results become more deterministic.

To make the corrections more deterministic, which may help reduce the high false positive
rates of these LLMs, I experimented with setting the temperature value to 0, which was the
lowest possible value for both GPT and Llama2 models. In previous experiments, I used the
default values of this parameter, which was 1 for GPT models (with the possible range being
[0, 2]) and 0.8 for Llama2 models (with range [0, 1]).

Table 6 below shows results when temperature is set to zero. For easy comparison, I also
include previous best results of each model.

Table 6: Results with default temperature and temperature set to 0. ​
Bolded numbers indicate improvements.

​
The above results indicated improvement for all GPT models, with most of the gains coming
from increased precision score, as expected. And we can also observe that this
improvement in precision score did not come at the expense of recall. In this new setting,
F0.5 of GPT 3.5 and GPT4 are equal.

It is surprising, however, that for Llama2 70B, both precision and recall deteriorated with
temperature set to 0.

Model Previous results Results with temperature = 0

 Prec Rec F0.5 Prec Rec F0.5

Llam2 70B 0.2904 0.4543 0.313 0.1798​ 0.4253 0.2032

GPT 3.5 0.3959 0.4954 0.4124 0.4503 0.4909 0.4579

GPT 4 0.3189 0.4482 0.3384 0.4515 0.4893 0.4586

GPT 4 Preview 0.3559 0.5137 0.3792 0.4226 0.4954 0.4354

VI. Conclusions and Future work
Advances in deep learning research, including the introduction of the Transformer
architecture, has made possible pretraining of LLMs on a massive amount of data. This
project explored whether GEC as a problem has been solved by recent LLMs, which has
shown remarkable ability in capturing linguistic property of language.

This project’s results indicated that when using Bea 2019 Shared Task’s labeled data for
evaluation, LLMs did not perform well in general, and with the surprising result that bigger
models (Llama-2 70B, GPT4 and GPT4-Preview) did not perform better than GPT3.5, which
is supposedly a much smaller model.

However, my manual analysis of these models’ outputs showed that LLMs’ corrections are
more fluid and diverse than what might have been expected by annotators of current labeled
data. As such, many of the corrections of LLMs were not covered in the labeled data, which
lead to both a low Precision, due to high false positive cases, and a low Recall due to LLMs’
different ways of making corrections.

The low performance of LLMs means that GEC is not a solved problem by this evaluation’s
standard. Although it is quite reasonable, in my opinion, to suppose that GEC is a solved
problem by LLMs, we currently can not make this conclusion using the current evaluation
method. In order to benchmark performance of different GEC systems that are based on
LLMs, a new evaluation approach seems warranted.

A direct solution to this evaluation challenge is to add more labeled corrections to the gold
data, but this approach seems costly and does not scale to new evaluation datasets.
Another problem with adding more labeled corrections is that we may need to introduce
some kind of semantics to the M2 file to group labeled corrections together, as certain
corrections only make sense if combined with certain other corrections for a given sentence.

Another possible direction is to view GEC as a subproblem under a more general problem
category such as text rewriting or text summarization and benefit from existing evaluation
metrics for those categories.

References
[1] Building Educational Applications 2019 Shared Task: Grammatical Error Correction.
https://www.cl.cam.ac.uk/research/nl/bea2019st/​

[2] Bryant, C., Felice, M., Andersen, Ø. E., & Briscoe, T. (2019, August). The BEA-2019
shared task on grammatical error correction. In Proceedings of the Fourteenth Workshop on
Innovative Use of NLP for Building Educational Applications (pp. 52-75).
​
[3] Bryant, C. J., Felice, M., & Briscoe, E. (2017, July). Automatic annotation and evaluation
of error types for grammatical error correction. Association for Computational Linguistics.

https://www.cl.cam.ac.uk/research/nl/bea2019st/

​
[4] BEA 2019 Shared Task - Grammatical Error Correction - All Tracks.
https://codalab.lisn.upsaclay.fr/competitions/4057#results
​
[5] Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing.
​
[6] Meta. Llama. https://ai.meta.com/llama/

[7] OpenAI. Models. https://platform.openai.com/docs/models

[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

[9] OpenRouter. A unified interface for LLMs. https://openrouter.ai/docs

https://codalab.lisn.upsaclay.fr/competitions/4057#results
https://ai.meta.com/llama/
https://platform.openai.com/docs/models
https://openrouter.ai/docs

	Evaluating Llama-2 and GPT models on the Grammatical Errors Correction Task
	I. Introduction
	II. Background on BEA 2019 Shared Task and Evaluation
	Datasets
	The ERRANT Toolkit
	Evaluation Metric
	The Unrestricted Track

	III. Methods
	Evaluated Models and Methodology
	​Our Evaluation Dataset

	IV. Experiments and Results
	Llama-2 13B Model
	Llama-2 70B Model
	GPT 3.5 (Turbo) Model
	GPT 4 Models

	V. Analysis and Discussion
	Follow-up experiments

	VI. Conclusions and Future work
	References

