
Finetuning pretrained models for Natural Language
Inference
Hung Huu Hoang

Department of Computer Science
University of Western Ontario

London, Ontario
hhoang26@uwo.ca

Abstract—For humans, it is not so difficult to tell if a
statement A implies statement B. For machines, however, this
remains a challenging task. In this project, I explore effects of
finetuning pretrained language models for the task of multilingual
Natural Language Inference via a Kaggle Competition. I experti-
mented with finetuning pretrained multilingual versions of BERT,
Deberta-V3 and Flan-T5. The results showed that finetuned
Deberta-V3 Base model produced the best Test result, even
better than a finetuned larger Flan-T5 model, and with a rather
consistent performance across languages. The best accuracy of
81.8% was obtained via an ensemble model.

Index Terms—NLI, multilingual, pretrained models, finetun-
ing, ensemble, mBERT, mDeberta-V3, Flan-T5, Kaggle

I. INTRODUCTION

In this Kaggle Competition named ”Contradictory, My Dear
Watson” [1], the Training Set consists of pairs of sentences,
sentence A and sentence B, and the task is to decide if the
content in sentence B is implied, contradicted or ”neither” by
sentence A. Here, “neither” means the content in B is neither
suggested nor refuted by the content in A.

In Natural Language Processing (NLP) literature, this kind
of tasks is referred to as a Natural Language Inference (NLI)
task because it involves some kind of deduction or inference.
NLI tasks help assess whether the system really “understands”
what is mentioned in sentence A or not by asking it to
tell if another piece of information (sentence B) can be
deduced from it. One aspect of this competition that makes
it quite challenging is that it contains data written in multiple
languages, not just in English.

Pretrained language models have become the defactor start-
ing points for various NLP tasks, including NLI, as they have
been shown to be able to capture the linguistic aspects of
language. In this project, I experimented with finetuning some
well-known pretrained models whose multilingual pretrained
models are available, including: BERT, DebertaV3 and Flan-
T5 1. I used the pretrained models made available on Hug-
gingFace [2].

The results showed that among single finetuned models,
finetuned mDeberta-V3 gave the best accuracy of 75.5% on

1In addition to the above 3 model families, I also experimented with the
multilingual version of Roberta. But for some reasons still unknown, the
finetuning of this model did not work. As such, this model is omitted from
the list above.

the Test Set, surpassing all other models, including finetuned
Flan-T5 Large.

Analyzing performance of the finetuned models over spe-
cific languages showed some surprising results and helped
identifying an ensemble method that lead to the best Test-Set
performance of 81.8%.

II. BACKGROUND ON PRETRAINED MODELS FINETUNING

The introduction of the Transformer architecture in 2017
[3] and the successful application of this model in pretraining
BERT [4] have opened a new wave of transfer learning via
pretrained language models. Pretrained language models are
language models trained on enormous datasets containing
billions of words, and often trained on various language-
related tasks, most often the masked tokens prediction task,
as used in BERT. As these models are able to capture the
linguistic aspect of languages, from syntax to semantics, they
serve well as base models for diverse downstream tasks.

Given a pretrained model, finetuning it for downstream tasks
means retraining it on a specific dataset for a target task.
Before this retraining is carried out, the pretrained model
is usually put on top (at the last-most Transformer block)
one or a few fully connected layers, although this can be
any other types of layers to suit the goal, where the last
of these new layers is designed to have the desired number
of output neurons suiting the target task. For NLI, this last
layer will contain 3 output logits for each of the 3 classes
(Entailment, Contradiction and Neutral). In terms of the data
required for finetuning, the target task’s dataset can be quite
small, starting from just tens, but more commonly hundreds,
of training examples. Compared to pretraining, finetuning is
much easier and faster to carry out as it requires substantially
less training time and compute power (usually a single GPU
or TPU would suffice).

In standard finetuning, all the parameters of the pretrained
models and the additional layers put on top are updated during
the training process on the target dataset. This is also the
approach I used in this project. Due to limited computational
resources, the largest pretrained model that I could finetune
was Flan-T5 large with 780 million parameters.



III. KAGGLE DATASET DESCRIPTIONS

For this competition, we are given 2 datasets: Train and
Test datasets. The Train and Test Set contains 12120 and 5195
examples, respectively.

Each example consists of a pair of sentences and other fields
in a comma-separated format as follows:

• id: a unique string representing this example.
• premise: sentence A.

Example: “and these comments were considered in for-
mulating the interim rules.”
Notes: As can be seen from this example, although
we call it a “sentence”, it may not be a full linguistic
sentence, and may be just a fragment of a sentence.
It nevertheless contains sufficient information for our
inference task.

• hypothesis: sentence B.
Example: “The rules developed in the interim were put
together with these comments in mind.”

• lang abv: the abbreviation code of the language.
Example: “en”

• language: the language of this pair of sentences.
Example: “English”

• label: either 0, 1 or 2, indicating the relationship between
sentence A and sentence B, as follows:

– 0: indicates entailment: B is implied by A
– 2: indicates contradiction: B is contradicted by A
– 1: indicates neutrality: when neither of the above 2

applies.
In the example pair given above, the label would be 0 to
indicate entailment.

The Train and Test datasets in this Kaggle Competition
contain pairs of sentences written in 15 languages: Arabic,
Bulgarian, Chinese, English, French, German, Greek, Hindi,
Russian, Spanish, Swahili, Thai, Turkish, Urdu and Viet-
namese. Fig. 1 shows the composition of these languages in
the training data set.

Among these 15 languages, English is the predominant
language, comprising 56.7% of the entire training data set.
The remaining 14 languages are quite equally distributed, each
contributes about 3% of the data set.

In terms of distribution of classes, the Training Set contains
a balance of the 3 classes. Fig. 2 shows the number of
examples and percentage of each class.

For the Test Set, as they are meant only for actual predic-
tions and rankings in the competition’s Leaderboard, I did not
look at nor analyze it. But the assumption here is that the
majority of the Test data would follow a similar distribution
as that of the Training data.

IV. METHODOLOGY

A. Finetuned models

In this project, I experimented with finetuning the follow-
ing 3 multilingual pretrained model families for this Kaggle
competition. These models were chosen because they are small
enough for finetuning on Google Colab [5] and their pretrained

Fig. 1. Distribution of languages in the Training Set

Fig. 2. Distribution of target classes in the Training Set

models are publicly available. The pretrained models I used
were from HuggingFace:

• BERT multilingual Base cased (mBERT) [4], [6]
• Deberta V3 multilingual Base (mDeberta-V3) [7], [8]
• Flan-T5 Base and Large versions. [9]–[11]
All of the 15 languages in this Kaggle competition are

supported by these multilingual models.
In terms of architecture, these models all have Transformer

as their underlying building blocks, but they differ in whether
they are Encoders, Decoders or both. Their pretraining process
and task are also different, but a more detailed description of
their differences are beyond the scope of this project. Table I
summarizes key aspects that are of relevance in this project.

TABLE I
KEY ASPECTS OF FINETUNED MODELS

Model Languages Architecture Parameters
mBERT Base 104 Encoder 178M
mDeberta V3 Base 102 Encoder 279M
Flan-T5 Base 60 Encoder-Decoder 250M
Flan-T5 Large 60 Encoder-Decoder 780M

B. Evaluation Metric

The evaluation metric used in this Kaggle Competition
is accuracy: the number of instances with correct predicted



class over all instances. For this Kaggle Competition and this
project, we are not concerned with accuracy per class but the
overall accuracy across all 3 classes, as the classes are equally
represented in the data.

Accuracy over the Dev Set can be calculated based on the
provided class labels. For the Test Set, whose class labels are
not provided to participants, we need to upload our predicted
class for each instance to Kaggle and receive an accuracy
number returned.

C. Finetuning details

For finetuning, we need to have a Dev Set to detect
overfitting and stop at the first 2 checkpoints whose Dev
loss continued to increase, i.e., using early stopping. For this
purpose, I took 20% of the data from the provided Train Set
to form my Dev Set. I first randomized the training data and
taking 20% stratified by labels (the target class) to make sure
the Dev result accurately reflects the distribution of the 3 NLI
classes in our training data.

There are a couple of important hyper-parameters that may
affect finetuning process. Table II summarizes values of the
parameters used in the finetuning process. They were used for
all finetuned models.

TABLE II
VALUES OF KEY HYPER-PARAMETERS FOR FINETUNING

Hyper-parameter Value
Learning rate 5e-05
Warmup ratio 0.1% of training steps
Optimizer AdamW
Weight decay 0.01

Batch size 16
(6 for Flan-T5 Large)

Gradient accummulation steps 1
(3 for Flan-T5 Large)

Loss function Cross-entropy loss

The optimizer used (also by default in the HuggingFace Li-
brary) is AdamW [12], which applies the weight decay directly
to the weight update steps, instead of at the loss calculation
step. The warmup ratio, a percentage of total training steps,
indicates the number steps over which the learning rate is
linearly increased from 0 up to the specified learning rate.
Gradient accummulation steps refers to the number of forward
steps after which accumulated gradients are averaged and a
backward pass is carried out to update the weights.

All of these models were finetuned on Google Colab using
a V100 GPU in high-ram mode, except for Flan-T5 Large
where V100 GPU would run out of memory. For this model, I
needed to use the TPU option, slower but with higher memory,
for finetuning.

For all models except Flan-T5 Large, it took < 1 hours to
complete the finetuning (i.e., being able to identify the best
epoch). For Flan-T5 Large, it took about 4 hours per epoch.
These were the time needed for a successful continuous run,
assuming no other issues that may happen on Google Colab
such as having the runtime disconnected or issues related to

models storage (required storage for each saved checkpoint
ranged from 2GB for BERT up to 9GB for Flan-T5 Large).

V. EXPERIMENTS AND RESULTS

A. Results of finetuned models

The following tables (Table III to Table VI) show the loss
on the Train and Dev Sets as well as Accuracy on Dev Set for
each finetuned model. For all models except Flan-T5 Large,
results were recorded after each epoch. For Flan-T5 Large,
results were recorded after every 300 backward steps. The
best model as evaluated on the Test set corresponds to the
row containing the Dev loss and Accuracy in bold.

TABLE III
MBERT BASE FINETUNING RESULTS

Epoch Train loss Dev loss Dev Accuracy
1 0.980 0.866 61.6
2 0.780 0.783 66.3
3 0.559 0.980 66.9
4 0.264 1.245 66.8

TABLE IV
MDEBERTA-V3 BASE FINETUNING RESULTS

Epoch Train loss Dev loss Dev Accuracy
1 0.882 0.614 76.6
2 0.555 0.632 77.3
3 0.374 0.787 78.3
4 0.237 1.126 78.2

TABLE V
FLAN-T5 BASE FINETUNING RESULTS

Epoch Train loss Dev loss Dev Accuracy
1 0.215 0.169 68.3
2 0.180 0.176 68.6
3 0.156 0.172 70.0
4 0.152 0.184 70.0
5 0.133 0.187 69.6

TABLE VI
FLAN-T5 LARGE FINETUNING RESULTS

Step Train loss Dev loss Dev Accuracy
300 N/A 0.156 71.9
600 0.160 0.152 73.5
900 0.160 0.158 73.2

1200 0.136 0.167 73.5
1500 0.105 0.184 72.7

The Test results of these finetuned models are shown in
Table VII.

B. Compare zero-shot and finetuned performance

To see if and by how much these finetuned version perform
better than pretrained models, I also evaluated zeroshot perfor-
mance of these models over the Test Set. Table VIII compare
zero-shot and finetuned performance of these models.

From table VIII, we can see the power of finetuning: fine-
tuning helped increase about 10% of Test accuracy for Flan-T5



TABLE VII
DEV & TEST RESULTS OF FINETUNED MODELS

Finetuned Model Dev Accuracy Test Accuracy
FT mBERT Base 66.3 65

FT mDeberta-V3 Base 77.3 75.5
FT Flan-T5 Base 70.0 69.2
FT Flan-T5 Large 73.5 73.3

TABLE VIII
COMPARE TEST-SET ZERO-SHOT AND FINETUNED PERFORMANCE

Model Zero-shot Finetuned
mBERT Base 32.3 65

mDeberta-V3 Base 33.6 75.5
Flan-T5 Base 58.6 69.2
Flan-T5 Large 68.9 73.3

Base and 4.5% for Flan-T5 Large. For mBERT and mDeberta-
V3, finetuning increased 32.7% and 41.9% respectively.

For mBERT and mDeberta-V3, they were not pretrained
on NLI-related tasks, and this explained why zero-shot per-
formance was very low, just about the same as a random
guess. After finetuned, however, their performance increased
dramatically, with mDeberta-V3’s finetuned performance even
exceeded that of Flan-T5 Large’s.

For Flan-T5’s, as they were pretrained on more than 1000
tasks, including NLI tasks, their zero-shot performances were
well above 50%. Yet, we can still see clear improvements
when finetuned over this Kaggle Dataset.

Another observation from the above results is that the effect
of finetuning became less significant for the Large version
compared to the Small version of Flan-T5. Although I did
not experiment with larger Flan-T5 models, i.e., Flan-T5 XL
and Flan-T5 XXL, due to resource constraints, my educated
estimate is that, in the same trend with the results of the
Base and Large Flan-T5 models shown above, the impact of
finetuning would diminish as pretrained models grow bigger.

C. Ensemble of the best finetuned models

In order to see if I could increase the accuracy by com-
bining these finetuned models, I experimented with creating
an ensemble from the 3 best performing finetuned models:
mDeberta-V3, Flan-T5 Large and Flan-T5 Base.

This combination method was used: if mDeberta’s classifi-
cation result was different from that of Flan-T5 Large, I would
use Flan-T5 Base’s output as the deciding vote. In the case
that Flan-T5 Base’s predicted class was not the same as any
of mDeberta’s and Flan-T5’s, mDeberta’s predicted class was
chosen, as mDeberta was the best performing model, based
on Table VII.

Results of this ensemble is shown in Table IX.

TABLE IX
ENSEMBLE OF MDEBERTA AND FLAN-T5 MODELS

Model Dev Accuracy Test Accuracy
Ensemble 76 76.2

This ensemble performed only slightly better than
mDeberta-V3, which scored a 75.5% accuracy over the Test
Set. This result seemed to indicate that something was amiss,
and so I decided to look at the performance of these 3 models
over each of the 15 languages in our Dev Set.

D. Performance break-down for each language

As the Dev Set provides language annotation (field ”lan-
guage”) for each training example, performance for each
language could be calculated for each model. Table X, XI,
XII, XIII shows performance of finetuned mBert, finetuned
mDeberta-V3, Flan-T5 Base (finetuned and zero-shot) and
Flan-T5 Large (finetuned and zero-shot) respectively. For all
tables, results are sorted by Dev Accuracy.

TABLE X
FINETUNED MBERT DEV-SET RESULT FOR EACH LANGUAGE

Language Dev Accuracy
Spanish 71.3
English 69.7

Bulgarian 67.9
German 67.2
Arabic 66.3
French 66.2

Vietnamese 64.7
Urdu 61.8

Chinese 61.5
Russian 59.5
Turkish 59.5
Greek 59.2
Hindi 57.9
Thai 55.8

Swahili 51.9

TABLE XI
FINETUNED MDEBERTA-V3 DEV-SET RESULT FOR EACH LANGUAGE

Language Dev Accuracy
Bulgarian 85.7
Spanish 82.5
Arabic 82.0
Turkish 79.7
English 79.3
Greek 76.3

German 76.1
Hindi 75.4

Russian 74.3
French 72.3

Vietnamese 72.1
Chinese 70.5

Thai 69.8
Urdu 67.4

Swahili 64.6

Many interesting and surprising information could be ob-
served from these break-down tables about each model. Table
X and Table XI shows that for both finetuned mBERT and fine-
tuned mDeberta-V3, their performance across languages were
rather consistent, with lowest accuracy for mBERT was 51.9
(for Swahili) and for mDeberta-V3 was 64.6 (for Swahili). In
stark contrast, Flan-T5 models, even after finetuned, produced
very different performances for different languages, with the



TABLE XII
FLAN-T5 BASE DEV-SET RESULT FOR EACH LANGUAGE

Language Finetuned Zero-shot
English 85.5 73.6
Spanish 75 62.5
German 74.6 56.7
French 64.6 52.3

Bulgarian 64.3 57.1
Turkish 59.5 47.3
Russian 55.4 44.6

Vietnamese 45.6 23.5
Arabic 44.9 31.5
Swahili 44.3 40.5
Greek 40.8 30.3
Hindi 40.6 37.7

Chinese 34.6 33.3
Thai 33.7 31.4
Urdu 30.3 43.8

TABLE XIII
FLAN-T5 LARGE DEV-SET RESULT FOR EACH LANGUAGE

Language Finetuned Zero-shot
English 88.9 85.1
German 83.6 74.6
Spanish 81.3 70

Bulgarian 80.4 55.4
French 80.0 63.1
Turkish 68.9 62.2
Russian 64.9 55.4
Swahili 46.8 40.5
Arabic 41.6 30.3

Vietnamese 41.2 33.8
Hindi 37.7 40.6
Greek 36.8 35.5
Thai 36.0 37.2

Chinese 30.8 30.8
Urdu 25.8 42.7

most notable point being that for a few languages, their
accuracies are just about a random model, i.e., in the range
[30%, 40%].

Looking at the effect of finetuning (vs zero-shot) for Flan-
T5 models from Table XII and Table XIII, it could be ob-
served that, apart from some minor degradation, performance
increased across languages after finetuning. This once again
confirmed the benefit of finetuning, even for all 14 non-English
languages where their training data accounts for only about 3%
of the total Train Set, which means on average just about 300
examples for finetuning.

Another very important point that can be observed from
Table XIII is that for finetuned Flan-T5 Large, there were
only 3 languages where it outperformed finetuned mDeberta-
V3: English (88.9 vs 79.3), German (83.6 vs 76.1) and French
(80.0 vs 72.3). For all remaining 12 languages, mDeberta-
V3 outperformed Flan-T5 Large, and for many of them, by
a large margin, with the most extreme case being that of
Urdu language where mDeberta-V3 obtained an accuracy of
67.4 vs 25.8 of finetuned Flan-T5 Large. This observation
suggested a promising way to ensemble these models to boost
performance, which is discussed in the next subsection.

E. Ensemble by language-based model selection

Based on our discussion above about different performances
of the finetuned models for different languages, the following
ensemble method becomes evident: for all languages, use fine-
tuned mDeberta-V3, except for English, German and French
where finetuned Flan-T5 Large was a better choice. In this
combination, Flan-T5 Base was no longer used.

I note here again that for this specific Kaggle dataset,
language annotations were available for both the Train and
Test Sets. This information facilitated our models selection
step above, which otherwise would have required access to a
small model for language detection.

Using this ensemble method, Table XIV shows our best
result in this project.

TABLE XIV
LANGUAGE-BASED ENSEMBLE OF MDEBERTA-V3 AND FLAN-T5 LARGE

Model Dev Accuracy Test Accuracy
Ensemble 83.1 81.8

VI. CONCLUSIONS AND FUTURE WORK

In this project, I worked on the multilingual NLI task
introduced in the Kaggle Competition called ”Contradictory,
My Dear Watson”. The approach I took to tackle this problem
was finetuning the following pretrained multilingual models:
mBERT Base, mDeberta-V3 Base and Flan-T5 (Base and
Large versions).

Performance of finetuned models, as discussed above,
demonstrated the effectiveness of finetuning, across all 15
languages, even when the number of finetuning examples for
all 14 non-English languages was just about 300 on average.

Among the above models, my experiments indicated the
superior performance of finetuned mDeberta-V3 Base over
this Kaggle multilingual dataset, especially in comparison
with finetuned Flan-T5 Large, even though Flan-T5 Large has
almost 3 times the number of parameters. Another noteworthy
observation was that finetuned mDeberta-V3’s performance
across languages was very consistent, which was something
finetuned Flan-T5 Large could not achieve.

My best result was obtained via an ensemble between
finetuned versions of mDeberta-V3 Base and Flan-T5 Large
where Flan-T5 Large was used for Engish, German and French
and mDeberta-V3 was used for all remaining languages. The
best Test accuracy obtained was 81.8%.

In this project, I only used the dataset provided by this
Kaggle Competition for finetuning, which was quite small
(12K examples). This made my results on these 15 languages
non-comparable to other published results, especially those
from mT5 [13], a T5-based multilingual model. In their
experiments, they finetuned mT5 on XNLI [14], a multilingual
dataset that is much larger with about 400K training examples
per language. Their results indicated improved performance
across languages after finetuning. For future work, it would
be interesting to repeat the experiments that have been done



in this project for mDeberta-V3 and Flan-T5, but using the
larger XNLI dataset.

REFERENCES

[1] P. C. Amy Jang Ana Sofia Uzsoy. “Contradictory, my
dear watson — kaggle.” (2020), Available: https : / /
kaggle . com / competitions / contradictory - my - dear -
watson.

[2] HuggingFace. “Models - huggingface,” Available: https:
//huggingface.co/models.

[3] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” Advances in neural information process-
ing systems, vol. 30, 2017.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[5] Google. “Google colab,” Available: https : / / colab .
research.google.com.

[6] HuggingFace. “Bert-base-multilingual-cased - hugging-
face,” Available: https : / / huggingface . co / bert - base -
multilingual-cased.

[7] P. He, J. Gao, and W. Chen, “Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing,” arXiv preprint
arXiv:2111.09543, 2021.

[8] HuggingFace. “Microsoft/mdeberta-v3-base - hugging-
face,” Available: https : / / huggingface . co / microsoft /
mdeberta-v3-base.

[9] H. W. Chung, L. Hou, S. Longpre, et al., “Scaling
instruction-finetuned language models,” arXiv preprint
arXiv:2210.11416, 2022.

[10] HuggingFace. “Google/flan-t5-base - huggingface,”
Available: https://huggingface.co/google/flan-t5-base.

[11] HuggingFace. “Google/flan-t5-large - huggingface,”
Available: https://huggingface.co/google/flan-t5-large.

[12] I. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” arXiv preprint arXiv:1711.05101, 2017.

[13] L. Xue, N. Constant, A. Roberts, et al., “Mt5: A mas-
sively multilingual pre-trained text-to-text transformer,”
arXiv preprint arXiv:2010.11934, 2020.

[14] A. Conneau, G. Lample, R. Rinott, et al., “Xnli: Eval-
uating cross-lingual sentence representations,” arXiv
preprint arXiv:1809.05053, 2018.


